Engineering a de Novo Transport Tunnel

Here we describe the computational design and directed evolution of a de novo transport tunnel in a haloalkane dehalogenase. Mutants with a blocked native tunnel and a newly opened auxiliary tunnel in a distinct part of the structure showed dramatically modified properties. The mutants with blocked tunnels acquired specificity never observed with native family members: up to 32 times increased substrate inhibition and 17 times reduced catalytic rates. Opening of the auxiliary tunnel resulted in specificity and substrate inhibition similar to those of the native enzyme and the most proficient haloalkane dehalogenase reported to date.


Brezovsky, J., Babkova, P., Degtjarik, O., Fortova, A., Gora, A., Iermak, I., Rezacova, P., Dvorak, P., Kuta Smatanova, I., Prokop, Z., Chaloupkova, R., Damborsky, J., 2016: Engineering a de Novo Transport Tunnel. ACS Catalysis 6: 7597-7610.

Prof. deMello to Give Lecture at MU
Gaspar Awarded the Best Poster Prize
Andy to Present at Gordon Research Conference
Marie Curie Grants for Piia and Stas
A Marie Curie Grant for Martin Marek
Sergio Marques the Most Ardent Journal Reader
Summer School of Protein Engineering