Engineering a de Novo Transport Tunnel

Here we describe the computational design and directed evolution of a de novo transport tunnel in a haloalkane dehalogenase. Mutants with a blocked native tunnel and a newly opened auxiliary tunnel in a distinct part of the structure showed dramatically modified properties. The mutants with blocked tunnels acquired specificity never observed with native family members: up to 32 times increased substrate inhibition and 17 times reduced catalytic rates. Opening of the auxiliary tunnel resulted in specificity and substrate inhibition similar to those of the native enzyme and the most proficient haloalkane dehalogenase reported to date.

de_novo_tunnel

Brezovsky, J., Babkova, P., Degtjarik, O., Fortova, A., Gora, A., Iermak, I., Rezacova, P., Dvorak, P., Kuta Smatanova, I., Prokop, Z., Chaloupkova, R., Damborsky, J., 2016: Engineering a de Novo Transport Tunnel. ACS Catalysis 6: 7597-7610.

Open Ph.D. Position: Marie Curie Innovative Training Network
Prof. Damborsky to present at an EMBO Workshop
Daniel’s Success in Students` Professional Activities
Three New Masters of Science: Zuzana, Martin and Pavel
Joseph Fourier Prize for Milos
The Dean’s Award for Veronika
A New Addition to the Team: Verunka