Engineering a de Novo Transport Tunnel

Here we describe the computational design and directed evolution of a de novo transport tunnel in a haloalkane dehalogenase. Mutants with a blocked native tunnel and a newly opened auxiliary tunnel in a distinct part of the structure showed dramatically modified properties. The mutants with blocked tunnels acquired specificity never observed with native family members: up to 32 times increased substrate inhibition and 17 times reduced catalytic rates. Opening of the auxiliary tunnel resulted in specificity and substrate inhibition similar to those of the native enzyme and the most proficient haloalkane dehalogenase reported to date.

de_novo_tunnel

Brezovsky, J., Babkova, P., Degtjarik, O., Fortova, A., Gora, A., Iermak, I., Rezacova, P., Dvorak, P., Kuta Smatanova, I., Prokop, Z., Chaloupkova, R., Damborsky, J., 2016: Engineering a de Novo Transport Tunnel. ACS Catalysis 6: 7597-7610.

Jan Stourac won Dean’s Award
Jan Stourac a Master of Science
An article co-authored by our group among the most influential articles of 2016
Martin Toul among the top five in biology/biochemistry category of Sigma-Aldrich competition
Petra Babkova awarded the International Union Crystallography Poster Competition Price
New addition to Loschmidt Laboratories team
Submitted grant proposal to Bill Gates Foundation