Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity

Authors

Babkova, P., Sebestova, E., Brezovsky, J., Chaloupkova, R., Damborsky, J.

Source

CHEMBIOCHEM 18: 1448-1456 (2017)

Abstract

Ancestral sequence reconstruction (ASR) represents a powerful approach for empirical testing structure-function relationships of diverse proteins. We employed ASR to predict sequences of five ancestral haloalkane dehalogenases (HLDs) from the HLD-II subfamily. Genes encoding the inferred ancestral sequences were synthesized and expressed in Escherichia coli and the resurrected ancestral enzymes AncHLD1-5 were experimentally characterized. Strikingly, the ancestral HLDs exhibited significantly enhanced thermodynamic stability compared to extant enzymes (ΔTm up to 24 °C). Compared to extant HLDs, the ancestors displayed higher specific activities with preference for short multi-substituted halogenated substrates. Moreover, multivariate statistical analysis revealed a shift in the substrate specificity profiles of AncHLD1 and AncHLD2, which would be extremely difficult to achieve by rational protein engineering. The study highlights that ASR is an efficient approach for development of novel biocatalysts and robust templates for directed evolution.

Full text •  Supplement

Citation

Babkova, P., Sebestova, E., Brezovsky, J., Chaloupkova, R., Damborsky, J., 2017: Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity. ChemBioChem 18: 1448-1456.

ELIXIR CZ annual conference 15 – 16 Nov, 2017
New video explaining the goals of Rafts4Biotech EU project
Invitation to a presentation by Synthetic Genomics
Andrea Schenkmayerova received a grant to attend an EMBO Practical Course
Open Postdoc Position: Protein Engineering
FireProt in MUNI
Jan Stourac won Dean’s Award