Ancestral haloalkane dehalogenases show robustness and unique substrate specificity

Authors

Babkova, P., Sebestova, E., Brezovsky, J., Chaloupkova, R., Damborsky, J.

Source

CHEMBIOCHEM XX: XXX-XXX (2017)

Abstract

Ancestral sequence reconstruction (ASR) represents a powerful approach for empirical testing structure-function relationships of diverse proteins. We employed ASR to predict sequences of five ancestral haloalkane dehalogenases (HLDs) from the HLD-II subfamily. Genes encoding the inferred ancestral sequences were synthesized and expressed in Escherichia coli and the resurrected ancestral enzymes AncHLD1-5 were experimentally characterized. Strikingly, the ancestral HLDs exhibited significantly enhanced thermodynamic stability compared to extant enzymes (ΔTm up to 24 °C). Compared to extant HLDs, the ancestors displayed higher specific activities with preference for short multi-substituted halogenated substrates. Moreover, multivariate statistical analysis revealed a shift in the substrate specificity profiles of AncHLD1 and AncHLD2, which would be extremely difficult to achieve by rational protein engineering. The study highlights that ASR is an efficient approach for development of novel biocatalysts and robust templates for directed evolution.

Citation

Babkova, P., Sebestova, E., Brezovsky, J., Chaloupkova, R., Damborsky, J., 2017: Ancestral haloalkane dehalogenases show robustness and unique substrate specificity. ChemBioChem XX: XXX-XXX.

Alzheimer’s Disease Consortium Meeting April 7-8
ES-Cat project Kick-off meeting in Cambridge
Loschmidt Laboratories place importance on combining theory and practice
Laboratory growing international
G. Dankova and A. Kunka awarded Brno Ph.D. Talent
Jaroslav Bendl, Ph.D.: From Loschmidt Laboratories to Mount Sinai School of Medicine in New York
Open Postdoc Position: Bioinformatics & Modeling