CaverDock: A Novel Method for the Fast Analysis of Ligand Transport

Authors

Filipovic, J., Vavra, O., Plhak, J., Bednar, D., Marques, S., Brezovsky, J., Matyska, L., Damborsky, J.

Source

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS XX: XXX-XXX (2019)

Abstract

Here we present a novel method for the analysis of transport processes in proteins and its implementation called CaverDock. Our method is based on a modified molecular docking algorithm.
It iteratively places the ligand along the access tunnel in such a way that the ligand movement is
contiguous and the energy is minimized. The result of CaverDock calculation is a ligand trajectory
and an energy profile of the transport process. CaverDock uses the modified docking program Autodock Vina for molecular docking and implements a parallel heuristic algorithm for searching the space of possible trajectories. Our method lies in between the geometrical approaches and molecular dynamics simulations. Contrary to the geometrical methods, it provides an evaluation of chemical forces. However, it is far less computationally demanding and easier to set up compared to molecular dynamics simulations. CaverDock will find broad use in the fields of computational enzymology, drug design and protein engineering. The software is available free of charge to the academic users at https://loschmidt.chemi.muni.cz/caverdock/.

Full text

Citation

Filipovic, J., Vavra, O., Plhak, J., Bednar, D., Marques, S., Brezovsky, J., Matyska, L., Damborsky, J., 2019: CaverDock: A Novel Method for the Fast Analysis of Ligand Transport. IEEE/ACM Transactions on Computational Biology and Bioinformatics XX: XXX-XXX.

New Version of CAVER PyMOL Plugin
New Website of SinFonia Project
Congratulations to Katka on her BA’s Degree
Hanka’s Success at a Student Conference
KinTek Workshop First Time in Europe
Open Postdoctoral Position: Protein Structural Biologist
Pavel Vanacek and Antonin Kunka Awarded by Dean