Computational Tools for Designing and Engineering Biocatalysts

Authors

Damborsky, J., Brezovsky, J.

Source

CURRENT OPINION IN CHEMICAL BIOLOGY 13: 26-34 (2009)

Abstract

Current computational tools to assist experimentalists for the design and engineering of proteins with desired catalytic properties are reviewed. The applications of these tools for de novo design of protein active sites, optimization of substrate access and product exit pathways, redesign of protein protein interfaces, identification of neutral/advantageous/deleterious mutations in the libraries from directed evolution and stabilization of protein structures are described. Remarkable progress is seen in de novo design of enzymes catalyzing a chemical reaction for which a natural biocatalyst does not exist. Yet, constructed biocatalysts do not match natural enzymes in their efficiency, suggesting that more research is needed to capture all the important features of natural biocatalysts in theoretical designs.

Full text

Citation

Damborsky, J., Brezovsky, J., 2009: Computational Tools for Designing and Engineering Biocatalysts. Current Opinion in Chemical Biology 13: 26-34.

Daniel’s Success in Students` Professional Activities
Three New Masters of Science: Zuzana, Martin and Pavel
Joseph Fourier Prize for Milos
The Dean’s Award for Veronika
A New Addition to the Team: Verunka
The Best Poster Award for Milos Musil
Martin the Winner of Sigma-Aldrich Competition