Computer-Assisted Engineering of Hyperstable Fibroblast Growth Factor 2

Authors

Dvorak, P., Bednar, D., Vanacek, P., Balek, L., Eiselleova, L., Stepankova, V., Sebestova, E., Kunova Bosakova, M., Konecna, Z., Mazurenko, S., Kunka, A. Vanova, T., Zoufalova, K., Chaloupkova, R., Brezovsky, J., Krejci, P., Prokop, Z., Dvorak, P., Dambor

Source

BIOTECHNOLOGY AND BIOENGINEERING 115: 850-862 (2018)

Abstract

Fibroblast growth factors (FGFs) serve numerous regulatory functions in complex organisms, and their corresponding therapeutic potential is of growing interest to academics and industrial researchers alike. However, applications of these proteins are limited due to their low stability. Here we tackle this problem using a generalizable computer-assisted protein engineering strategy to create a unique modified FGF2 with nine mutations displaying unprecedented stability and uncompromised biological function. The data from the characterization of stabilized FGF2 showed a remarkable prediction potential of in silico methods and provided insight into the unfolding mechanism of the protein. The molecule holds a considerable promise for stem cell research and medical or pharmaceutical applications.

Full text •  Supplement

Citation

Dvorak, P., Bednar, D., Vanacek, P., Balek, L., Eiselleova, L., Stepankova, V., Sebestova, E., Kunova Bosakova, M., Konecna, Z., Mazurenko, S., Kunka, A. Vanova, T., Zoufalova, K., Chaloupkova, R., Brezovsky, J., Krejci, P., Prokop, Z., Dvorak, P., Dambor, 2018: Computer-Assisted Engineering of Hyperstable Fibroblast Growth Factor 2. Biotechnology and Bioengineering 115: 850-862.

David Awarded by MUNI Scientist Award
Tonda Succesfully Defended Doctoral Thesis
LL & Enantis Awarded by MUNI Innovation Award
Lucia’s Success at AMAVET Competition
Ph.D. Student Wanted
Martin Selected for Global Young Scientists Summit
Honza to Present at 17th P4EU Meeting