Computer-Assisted Engineering of Hyperstable Fibroblast Growth Factor 2

Authors

Dvorak, P., Bednar, D., Vanacek, P., Balek, L., Eiselleova, L., Stepankova, V., Sebestova, E., Kunova Bosakova, M., Konecna, Z., Mazurenko, S., Kunka, A. Vanova, T., Zoufalova, K., Chaloupkova, R., Brezovsky, J., Krejci, P., Prokop, Z., Dvorak, P., Damborsky, J.

Source

BIOTECHNOLOGY AND BIOENGINEERING 115: 850-862 (2018)

Abstract

Fibroblast growth factors (FGFs) serve numerous regulatory functions in complex organisms, and their corresponding therapeutic potential is of growing interest to academics and industrial researchers alike. However, applications of these proteins are limited due to their low stability. Here we tackle this problem using a generalizable computer-assisted protein engineering strategy to create a unique modified FGF2 with nine mutations displaying unprecedented stability and uncompromised biological function. The data from the characterization of stabilized FGF2 showed a remarkable prediction potential of in silico methods and provided insight into the unfolding mechanism of the protein. The molecule holds a considerable promise for stem cell research and medical or pharmaceutical applications.

Full text •  Supplement

Citation

Dvorak, P., Bednar, D., Vanacek, P., Balek, L., Eiselleova, L., Stepankova, V., Sebestova, E., Kunova Bosakova, M., Konecna, Z., Mazurenko, S., Kunka, A. Vanova, T., Zoufalova, K., Chaloupkova, R., Brezovsky, J., Krejci, P., Prokop, Z., Dvorak, P., Damborsky, J., 2018: Computer-Assisted Engineering of Hyperstable Fibroblast Growth Factor 2. Biotechnology and Bioengineering 115: 850-862.

COURSE: Computational Approaches and In Silico Enzyme Library Design for Applied Biocatalysis
Jan, Petr and Martin Awarded at SOC
Pavel’s Success at State Exam
LL Hosting R4B General Assembly
How LL Research Focus Fits the Big Issues in Medicine
Open Postdoctoral Position: Protein Structural Biologist
Martin Marek’s Success in GAMU Project