Dynamics and Hydration Explain Failed Functional Transformation in Dehalogenase Design

Authors

Sykora, J., Brezovsky, J., Koudelakova, T., Lahoda, M., Fortova, A., Chernovets, T., Chaloupkova, R., Stepankova, V., Prokop, Z., Kuta Smatanova, I., Hof, M., Damborsky, J.

Source

NATURE CHEMICAL BIOLOGY 10: 428-430 (2014)

Abstract

We emphasize the importance of dynamics and hydration for enzymatic catalysis and protein design by transplanting the active site from a haloalkane dehalogenase with high enantioselectivity to nonselective dehalogenase. Protein crystallography confirms that the active site geometry of the redesigned dehalogenase matches that of the target, but its enantioselectivity remains low. Time-dependent fluorescence shifts and computer simulations revealed that dynamics and hydration at the tunnel mouth differ substantially between the redesigned and target dehalogenase.

Full text •  Supplement

Citation

Sykora, J., Brezovsky, J., Koudelakova, T., Lahoda, M., Fortova, A., Chernovets, T., Chaloupkova, R., Stepankova, V., Prokop, Z., Kuta Smatanova, I., Hof, M., Damborsky, J., 2014: Dynamics and Hydration Explain Failed Functional Transformation in Dehalogenase Design. Nature Chemical Biology 10: 428-430.

Open Position: Postdoc in Enzymology & Protein Engineering
Open Position: Postdoc in Protein Structural Biology
2nd Hands-on Computational Enzyme Design Course Successfully Behind Us
Singapore Patent for FGF2 Granted
The Dean’s Award for Honza and Ondra
Martin to Present at ProtStab’2021
Nikola’s Success at SOC