FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants

Authors

Bednar, D., Beerens, K., Sebestova, E., Bendl, J., Khare, S., Chaloupkova, R., Prokop, Z., Brezovsky, J., Baker, D., Damborsky, J.

Source

PLOS COMPUTATIONAL BIOLOGY 11: e1004556 (2015)

Abstract

There is great interest in increasing proteins’ stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt’s reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

Full text •  Supplement

Citation

Bednar, D., Beerens, K., Sebestova, E., Bendl, J., Khare, S., Chaloupkova, R., Prokop, Z., Brezovsky, J., Baker, D., Damborsky, J., 2015: FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants. PLOS Computational Biology 11: e1004556.

Vesicles Mimicking Neuron Plasma Membranes Successfully Produced
4th Hands-on Computational Enzyme Design Workshop
Mystery of Renilla-type Luciferases Solved
New Baby in LL
PredictSNP Onco: Towards Personalized Medicine in Children’s Oncology
Merry Christmas and Happy New Year
Four LL Students Awarded Brno PhD Talent