Partial Differential Equation for Evolution of Star-Shaped Reachability Domains of Differential Inclusions

Authors

Mazurenko, S.

Source

SET-VALUED AND VARIATIONAL ANALYSIS 24: 333-354 (2016)

Abstract

The problem of reachability for differential inclusions is an active topic in the recent control theory. Its solution provides an insight into the dynamics of an investigated system and also enables one to design synthesizing control strategies under a given optimality criterion. The primary results on reachability were mostly applicable to convex sets, whose dynamics is described through that of their support functions. Those results were further extended to the viability problem and some types of nonlinear systems. However, non-convex sets can arise even in simple bilinear systems. Hence, the issue of nonconvexity in reachability problems requires a more detailed investigation. The present article follows an alternative approach for this cause. It deals with star-shaped reachability sets, describing the evolution of these sets in terms of radial (Minkowski gauge) functions. The derived partial differential equation is then modified to cope with additional state constraints due to on-line measurement observations. Finally, the last section is on designing optimal closed-loop control strategies using radial functions.

Full text

Citation

Mazurenko, S., 2016: Partial Differential Equation for Evolution of Star-Shaped Reachability Domains of Differential Inclusions. Set-Valued and Variational Analysis 24: 333-354.

ELIXIR CZ annual conference 15 – 16 Nov, 2017
New video explaining the goals of Rafts4Biotech EU project
Invitation to a presentation by Synthetic Genomics
Andrea Schenkmayerova received a grant to attend an EMBO Practical Course
Open Postdoc Position: Protein Engineering
FireProt in MUNI
Jan Stourac won Dean’s Award