Redesigning Dehalogenase Access Tunnels as a Strategy for Degrading an Anthropogenic Substrate

Authors

Pavlova, M., Klvana, M., Prokop, Z., Chaloupkova, R., Banas, P., Otyepka, M., Wade, R., Nagata, Y., Damborsky, J.

Source

NATURE CHEMICAL BIOLOGY 5: 727-733 (2009)

Abstract

Engineering enzymes to degrade anthropogenic compounds efficiently is challenging. We obtained Rhodococcus rhodochrous haloalkane dehalogenase mutants with up to 32-fold higher activity than wild type toward the toxic, recalcitrant anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. We identified key residues in access tunnels connecting the buried active site with bulk solvent by rational design and randomized them by directed evolution. The most active mutant has large aromatic residues at two out of three randomized positions and two positions modified by site-directed mutagenesis. These changes apparently enhance activity with TCP by decreasing accessibility of the active site for water molecules, thereby promoting activated complex formation. Kinetic analyses confirmed that the mutations improved carbon-halogen bond cleavage and shifted the rate-limiting step to the release of products. Engineering access tunnels by combining computer-assisted protein design with directed evolution may be a valuable strategy for refining catalytic properties of enzymes with buried active sites.

Full text •  Supplement

Citation

Pavlova, M., Klvana, M., Prokop, Z., Chaloupkova, R., Banas, P., Otyepka, M., Wade, R., Nagata, Y., Damborsky, J., 2009: Redesigning Dehalogenase Access Tunnels as a Strategy for Degrading an Anthropogenic Substrate. Nature Chemical Biology 5: 727-733.

Daniel’s Success in Students` Professional Activities
Three New Masters of Science: Zuzana, Martin and Pavel
Joseph Fourier Prize for Milos
The Dean’s Award for Veronika
A New Addition to the Team: Verunka
The Best Poster Award for Milos Musil
Martin the Winner of Sigma-Aldrich Competition