Substrate Anchoring and Flexibility Reduction in CYP153AM.aq Leads to Highly Improved Efficiency towards Octanoic Acid

Authors

Rapp, L. R., Marques, S. M., Zukic, E., Rowlinson, B., Sharma, M., Grogan, G., Damborsky, J., Hauer, B.

Source

ACS CATALYSIS 11: 3182-3189 (2021)

Abstract

 Cytochrome P450 CYP153AM.aq from Marinobacter aquaeolei serves as a model enzyme for the terminal (ω-) hydroxylation of medium- to long-chain fatty acids. We have engineered this enzyme using different mutagenesis approaches based on structure-sequence-alignments within the 3DM database and crystal structures of CYP153AM.aq and a homologue CYP153AP.sp. Applying these focused mutagenesis strategies and site-directed saturation mutagenesis, we created a variant that ω-hydroxylates octanoic acid. The M.aqRLT variant exhibited 151-fold improved catalytic efficiency and showed strongly improved substrate binding (25-fold reduced Km compared to the wild type). We then used molecular dynamics simulations to gain deeper insights into the dynamics of the protein. We found the tunnel modifications and the two loop regions showing greatly reduced flexibility in the engineered variant were the main features responsible for stabilizing the enzyme-substrate complex and enhancing the catalytic efficiency. Additionally, we showed that a previously known fatty acid anchor (Q129R) interacts significantly with the ligand to hold it in the reactive position, thereby boosting the activity of the variant M.aqRLT towards octanoic acid. The study demonstrates the significant effects of both substrate stabilization and the impact of enzyme flexibility on catalytic efficiency. These results could guide the future engineering of enzymes with deeply buried active sites to increase or even establish activities towards yet uknown types of substrates.

Full text •  Supplement

Citation

Rapp, L. R., Marques, S. M., Zukic, E., Rowlinson, B., Sharma, M., Grogan, G., Damborsky, J., Hauer, B., 2021: Substrate Anchoring and Flexibility Reduction in CYP153AM.aq Leads to Highly Improved Efficiency towards Octanoic Acid. ACS Catalysis 11: 3182-3189.

Open Position: Postdoc in Enzymology & Protein Engineering
Open Position: Postdoc in Protein Structural Biology
2nd Hands-on Computational Enzyme Design Course Successfully Behind Us
Singapore Patent for FGF2 Granted
The Dean’s Award for Honza and Ondra
Martin to Present at ProtStab’2021
Nikola’s Success at SOC