Suppression of Protein Inactivation During Freezing by Minimizing pH Changes Using Ionic Cryoprotectants

Authors

Krauskova, L., Prochazkova, J., Klaskova, M., Filipova, L., Chaloupkova, R., Maly, S., Damborsky, J., Heger, D.

Source

INTERNATIONAL JOURNAL OF PHARMACEUTICS 509: 41-49 (2016)

Abstract

Freezing and lyophilization are often used for stabilization of biomolecules; however, this sometimes results in partial degradation and loss of biological function in these molecules. In this study we examined the effect of freezing-induced acidity changes on denaturation of the model enzyme haloalkane dehalogenase under various experimental conditions. The effective local pH of frozen solutions is shown to be the key causal factor in protein stability. To preserve the activity of frozen-thawed enzymes, acidity changes were prevented by the addition of an ionic cryoprotectant, a compound which counteracts pH changes during freezing due to selective incorporation of its ions into the ice. This approach resulted in complete recovery of enzyme activity after multiple freeze-thaw cycles. We propose the utilization of ionic cryoprotectants as a new and effective cryopreservation method in research laboratories as well as in industrial processes.

Full text

Citation

Krauskova, L., Prochazkova, J., Klaskova, M., Filipova, L., Chaloupkova, R., Maly, S., Damborsky, J., Heger, D., 2016: Suppression of Protein Inactivation During Freezing by Minimizing pH Changes Using Ionic Cryoprotectants. International Journal of Pharmaceutics 509: 41-49.

ELIXIR CZ annual conference 15 – 16 Nov, 2017
New video explaining the goals of Rafts4Biotech EU project
Invitation to a presentation by Synthetic Genomics
Andrea Schenkmayerova received a grant to attend an EMBO Practical Course
Open Postdoc Position: Protein Engineering
FireProt in MUNI
Jan Stourac won Dean’s Award