TRITON: In Silico Construction of Protein Mutants and Prediction of their Activities

Authors

Prokop, M., Damborsky, J., Koca, J.

Source

BIOINFORMATICS 16: 845-846 (2000)

Abstract

Motivation: One of the objectives of protein engineering is to propose and construct modified proteins with improved activity for the substrate of interest. Systematic computational investigation of many protein variants requires the preparation and handling of a large number of data files. The type of the data generated during the modelling of protein variants and the estimation of their activities offers the possibility of process automatization. Results: The graphical program TRITON has been developed for modelling protein mutants and assessment of their activities. Protein mutants are modelled from the wild type structure by homology modelling using the external program MODELLER. Chemical reactions taking place in the mutants active site are modelled using the semi-empirical quantum mechanic program MOPAC. Semi-quantitative predictions of mutants activities can be achieved by evaluating the changes in energies of the system and partial atomic charges of active site residues during the reaction. The program TRITON offers graphical tools for the preparation of the input data files, for calculation and for the analysis of the generated output data. Availability: The program TRITON can run under operating systems IRIX, Linux and NetBSD. The software is available at http://www.chemi.muni.cz/lbsd/triton.html. Contact: triton@chemi.muni.cz

Full text

Citation

Prokop, M., Damborsky, J., Koca, J., 2000: TRITON: In Silico Construction of Protein Mutants and Prediction of their Activities. Bioinformatics 16: 845-846.

ELIXIR CZ annual conference 15 – 16 Nov, 2017
New video explaining the goals of Rafts4Biotech EU project
Invitation to a presentation by Synthetic Genomics
Andrea Schenkmayerova received a grant to attend an EMBO Practical Course
Open Postdoc Position: Protein Engineering
FireProt in MUNI
Jan Stourac won Dean’s Award