CaverDock: A Novel Method for the Fast Analysis of Ligand Transport

Authors

Filipovic, J., Vavra, O., Plhak, J., Bednar, D., Marques, S., Brezovsky, J., Matyska, L., Damborsky, J.

Source

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 17: 1625-1638 (2019)

Abstract

Here we present a novel method for the analysis of transport processes in proteins and its implementation called CaverDock. Our method is based on a modified molecular docking algorithm. It iteratively places the ligand along the access tunnel in such a way that the ligand movement is contiguous and the energy is minimized. The result of CaverDock calculation is a ligand trajectory and an energy profile of the transport process. CaverDock uses the modified docking program Autodock Vina for molecular docking and implements a parallel heuristic algorithm for searching the space of possible trajectories. Our method lies in between the geometrical approaches and molecular dynamics simulations. Contrary to the geometrical methods, it provides an evaluation of chemical forces. However, it is far less computationally demanding and easier to set up compared to molecular dynamics simulations. CaverDock will find broad use in the fields of computational enzymology, drug design and protein engineering. The software is available free of charge to the academic users at https://loschmidt.chemi.muni.cz/caverdock/.

Full text

Citation

Filipovic, J., Vavra, O., Plhak, J., Bednar, D., Marques, S., Brezovsky, J., Matyska, L., Damborsky, J., 2019: CaverDock: A Novel Method for the Fast Analysis of Ligand Transport. IEEE/ACM Transactions on Computational Biology and Bioinformatics 17: 1625-1638.

Czech-Swiss Scientific Partnership Strengthened: Zbynek Meets with Swiss Ambassador
JCCM: Interview with Dan
Plenary Lecture Invitation: Zbynek at IMTB 2026
Joint Workshop with CIIRC
Invited Lecture of Prof. Fraaije
Halloween Party
Daniel’s Research Internship at University of Exeter