Computational Tools for Designing Smart Libraries

Authors

Sebestova, E., Bendl, J., Brezovsky, J., Damborsky, J.

Source

METHODS IN MOLECULAR BIOLOGY 1179: 291-314 (2014)

Abstract

Traditional directed evolution experiments are often time-, labor- and cost-intensive because they involve repeated rounds of random mutagenesis and the selection or screening of large mutant libraries. The efficiency of directed evolution experiments can be significantly improved by targeting mutagenesis to a limited number of hot-spot positions and/or selecting a limited set of substitutions. The design of such “smart” libraries can be greatly facilitated by in silico analyses and predictions. Here we provide an overview of computational tools applicable for (a) the identification of hot-spots for engineering enzyme properties, and (b) the evaluation of predicted hot-spots and selection of suitable amino acids for substitutions. The selected tools do not require any specific expertise and can easily be implemented by the wider scientific community.

Full text

Citation

Sebestova, E., Bendl, J., Brezovsky, J., Damborsky, J., 2014: Computational Tools for Designing Smart Libraries. Methods in Molecular Biology 1179: 291-314.

Our Researchers at DESY & European XFEL Meeting
CLARA Young Innovator Award 2026
Ice Skating in LL
New Baby in LL
Season’s Greetings
Christmas Party
Four New PhD Talents from LL